MATHEMATICS APPLICATIONS

MAWA Semester 1 (Unit 3) Examination 2017

Calculator-Assumed

Marking Key

© MAWA, 2017

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to
 anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing
 them how the work is marked but students are not to retain a copy of the paper or marking guide until the
 agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

• the end of week 8 of term 2, 2017

Section Two: Calculator-assumed

CALCULATOR-ASSUMED **MARKING KEY**

(100 Marks)

Day	1	2	3	4	5
Number of netres	75	125	175	225	275
mber of metres ↑	5				
300 -					
250					
200-					
150					
100-					
_	•				
50					
					—
= 50n + 25	1	2	3	4	5
- 3011 + 23					
rking key/math	ematical beh	naviours			Marks
		lus one other t	o table		1
 completes 					1
	S				1
labels axe					A
 labels axe scales axe	es				1
 labels axe scales axe plots point	es ts from table	e with correct d			

Question 8 (a)

			Lessor	n times		
Age group	Age range	4 pm	5 pm	7 pm	8 pm	Total
Primary	5 to 12	10	7	6	2	25
Secondary	12-18	5	7	10	3	25
Tertiary	19-25	4	5	7	9	25
Older adult	Over 25	2	3	4	16	25
	Total	21	22	27	30	100
Marking key/m	nathematical be	haviours	1	1		Marks
deterr	nines 2 missing	y values				1
 deterr 	nines another 2	missing val	lues			1

Question 8 (b)

Solution	
27%	
Marking key/mathematical behaviours	Marks
determines percentage	1

Question 8 (c)

Solution	
16%	
Marking key/mathematical behaviours	Marks
 identifies percentage 	1

Question 8 (d)

Solution	
There are 10% in secondary and 30% in tertiary	
The % in tertiary is three times that of secondary	
Marking key/mathematical behaviours	Marks
determines the percentages for each group	1
compares the two groups	1

Page 3

Question 8 (e)

Solution

Generally – the older the student the later they prefer to have a lesson For primary the later the lesson the less it is preferred.

For tertiary and older adult, the later the lesson the more it is preferred

For secondary the association is not as clear because there is not a consistent pattern across the lesson times

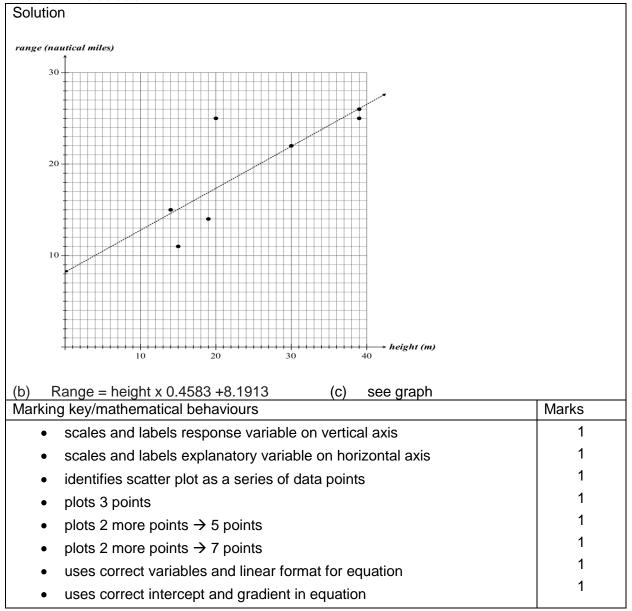
Marking key/mathematical behaviours	
states a general conclusion	1
 summarises the association for tertiary and older adults 	1
 summarises the association for secondary 	1
 summarises the association for primary 	1

Question 9 (a)

Colution	
Solution	
BCKG 152 km	
BCG 109 km	
BCLMG 173 km	
BCLMWG 213 km	
BEWG 106 km	
BEWMG 186 km	
The shortest distance is 106 km and the path is BEWG	
	Marks
	Marks 1
Marking key/mathematical behaviours	Marks 1 1
Marking key/mathematical behaviours determines shortest path 	Marks 1 1 1
Marking key/mathematical behaviours determines shortest path determines distance of shortest path 	Marks 1 1 1 1 1

Question 9 (b)

Solution	
It is a path because all edges and vertices in the route are different	
Marking key/mathematical behaviours	Marks
identifies edges need to be different	1
identifies vertices need to be different	1


Question 9 (c)

Solution	
GMLCB is the shortest route and it is 173 km. It is 67 km longer.	
Marking key/mathematical behaviours	Marks
 identifies shortest path through L 	1
 compares new path to the initial path 	1

Question 9 (d)

Solution	
Yes – there are distances marked on the edges	
Marking key/mathematical behaviours	Marks
identifies features of a weighted graph in relation to the one provided	1

Question 10 (a)(b)(c)

identifies vertical intercept for least squares line	1
 draws line with gradient as per equation 	1

Question 10 (d)

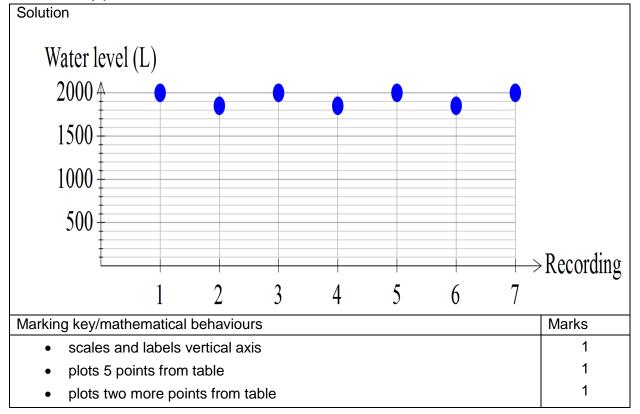
Solution	
Lighthouse F	
It is furtherest away from the line	
Marking key/mathematical behaviours	Marks
 identifies most extreme value 	1
 justifies the selection 	

Question 10 (e)

Solution	
0.6343	
Marking key/mathematical behaviours	Marks
identifies coefficient of determination	1

Question 10 (f)

Solution	
20 (19.6) nautical miles	
Marking key/mathematical behaviours	Marks
substitutes into equation for least squares line	1
determines range in nautical miles	1


Question 10 (g)

Solution	
 (i) interpolation OR high correlation coefficient at about 0.8 (ii) not many data points have been used to determine the equation OR lin what appears to be an outlier 	e influenced by
Marking key/mathematical behaviours	Marks
identifies initial edge and finishing point	1

Question 11 (a)

Solution							
Recording	1	2	3	4	5	6	7
Water level (L)	2000	1850	2000	1850	2000	1850	2000
Marking key/mathematical behaviours					Marks		
enters first two values into table					1		
completes the table					1		

Question 11 (b)

Question 11 (c)

Solution	
Water level reaches a steady state	
Marking key/mathematical behaviours	Marks
identifies long-term trend	1

Question 11 (d)

Solution	
The loss is equal to what is gained.	
Marking key/mathematical behaviours	Marks
 describes conditions for reaching steady state 	1

٦

Question 11 (e)

Solution	
$T_1 = 2000, T_{n+1} = 0.925T_n + 150$	
Marking key/mathematical behaviours	Marks
defines first term	1
uses formula for first order linear recurrence relation with constant	1
identifies rate	1

Question 11 (f)

Solution	
$W_2 = 1670, W_3 = 1637$	
Marking key/mathematical behaviours	Marks
determines second term	1
determines third term	1

Question 12 (a)

Solution

Intersection of the streets /where the different streets meet	
Marking key/mathematical behaviours	Marks
 identifies vertices as where edges meet 	1

Question 12 (b)

Solution	
M and V	
Marking key/mathematical behaviours	Marks
identifies all odd vertices	1

Question 12 (c)

Solution	
VTMVQSBQLSTLM	
Marking key/mathematical behaviours	Marks
 starts and ends with an odd vertex 	1
 lists edges so that all are covered 	1
lists edges with no repeats	1

Question 12 (d)

Solution	
Streets can be represented by edges, meeting of streets can be represented by the	e nodes
Marking key/mathematical behaviours	Marks
explains use of network	1

٦

Question 12 (e)

Solution	
V + f - e = 2 $7 + 7 - 12 = 2$	
Marking key/mathematical behaviours	Marks
substitutes correctly into Euler's rule	1
 determines values according to Euler's rule 	1

Question 12 (f)

Solution

Is Eulerian as it has a closed trail. Starts and ends at the same vertex. Can go over every edge once only.

Marking key/mathematical behaviours	Marks
 explains closed nature of the network 	1
 links definition to starting and ending at the same vertex 	1

Question 13 (a)

Solution	
500. At n = 1, P=500	
Marking key/mathematical behaviours	Marks
determines first term	1
 justifies first term 	1

Question 13 (b)

Solution	
$500 \times 1.2^9 = 2580$	
Marking key/mathematical behaviours	Marks
substitutes into rule	1
evaluates subject	1

Question 13 (c)

Solution	
Growing at 20% per week	
Marking key/mathematical behaviours	Marks
identifies rate of growth	1

Question 13 (d) Solution

		1
B is faster, the dots are rising more quickly		1
Marking key/mathematical behaviours	Marks	1
identifies faster rate	1	1
justifies choice	1	1

Question 13 (e)

Solution	
Geometric. The rate of change is proportional rather than a fixed value	
Marking key/mathematical behaviours	Marks
identifies growth is geometric	1
justifies selection	1

Question 13 (f)

Solution	
Week 4	
Marking key/mathematical behaviours	Marks
interprets graph of sequences	1

Question 13 (g)

Solution	
Rate = 420 ÷ 300 = 1.4	
$P = 300 (1.4)^{n-1}$	
Marking key/mathematical behaviours	Marks
determines rate of growth	1
 identifies equation with format and starting value 	1
identifies exponent	1

Question 14 (a)

Solution	
ALTREHBPSMA	
Marking key/mathematical behaviours	Marks
 starts and ends at A 	1
route considers all vertices	1
no vertices repeated	1

Question 14 (b)

Solution	
6	
LM,PA,HS,ET,BT,PT	
Marking key/mathematical behaviours	Marks
 determines number of unused paths 	11
 names number of unused paths 	

Question 14 (c)

Solution

Yes – it is closed	
No edges are repeated and every vertex is visited once only	
Marking key/mathematical behaviours	Marks
identifies route as a cycle	1
 identifies related description of edges and vertices 	1

Question 14 (d)

Solution	
Not semi-eulerian	
Not all edges are crossed	
Marking key/mathematical behaviours	Marks
concludes not semi-eulerian	1
justifies conclusion	1

Question 14 (e)

Solution		
TRUE: Connected as all vertices are linked by at least one edge to another vertex TRUE: Simple as no loops or multiple edges FALSE: Walk not BPHS because there is no edge from P to H		
Marking key/mathematical behaviours	Marks	
 identifies graph is connected and explains 	1	
 identifies graph is simple and explains 	1	
identifies not a walk and explains	1	

Question 15

Solution A F C E D	
Marking key/mathematical behaviours	Marks
identifies all 6 nodes	1
draws two paths between A and B and between C and E	1
 draws one path to represent "1" in the matrix 	1
has not extra edges	1
leaves F unconnected	1

Question 16 (a)

Solution	
When TF = 8, the residual is 10. The observed value for TC is 10 more than that predicted by the least squares line.	
Marking key/mathematical behaviours	Marks
 identifies the size of the residual for a particular TF value 	1
 compares TF predicted with the observed value 	1

Question 16 (b)

Solution	
The value of the observed TC is less than that predicted by the model	
Marking key/mathematical behaviours	Marks
explains the negative residual	1

Question 16 (c)

Solution
A residual plot is used to

support the identification of the linear trend for bivariate data. If the residuals are scattered "evenly" around the horizontal axis then this lend support to the idea that the relationship between the two variables is linear.

Marking key/mathematical behaviours

Marks 1 describes why residual plot is used • 1 describes how residual plot is used •